
The DojoCrypt platform is available at https://dojocrypt.tii.ae.

If you are reading this file, you are in the getting_started folder. This is a good place to start getting familiar with the DojoCrypt platform!

Here you can find some examples and tutorials on how to use some of the main tools available in the DojoCrypt images. Examples and tutorials are
provided in the form of python files, jupyter notebooks or shell scripts, depending on the tool.

For each tool, you will find a folder with the name of the tool. Inside this folder, you can find a README.md file, with instructions on how to quickly get started
with the tool, and some description of the content of the folder.

The getting_started folder is read-only, so you will not be able to modify the files in this folder. The content of these files is meant to be copy-pasted into
your workspace.

You should try to keep your files in the folder /home/<your_username>/my-files . This is the only folder for which persistence of your files is guaranteed,
even across different deployments (see next section) and after your current deployment is deleted. Any file outside the my-files folder will be deleted
whenever the deployment is deleted. Note, that some tools require to generate files in the folder of the tool, e.g. /home/tagada/tools . Remember to bring
those files in the my-files folder if you need them after the deployment is deleted.

If you are reading this, you have probably already created a deployment from the DojoCrypt dashboard. You might have noticed that, during the process of
creating this deployment, you were asked to select an image.

IMPORTANT NOTE: the examples for one tool will only work in the image related to that tool.

In the free version, you can only create one deployment at a time. If you need to create a new deployment, you first need to delete the current deployment.

You can connect to your deployments also using SSH. You only need to

1. open a terminal in a device with internet connection;
2. copy-paste the command displayed in the deployment card into the terminal;
3. when prompted, copy-paste the password displayed in the deployment card into the terminal;

Your terminal will enter into your deployment home folder /home/<username>/ , inside which you can find the my-files folder.

There is a number of ways in which you could contribute to the project:

Share a docker image you would like to push on the DojoCrypt platform: please share a link to the dockerfile and some example to test the image.
Provide suggestions on how to improve the web-app.
Fund the project: this can be done with

direct payments,
by participating to research grants together,

Welcome to DojoCrypt!

Examples and tutorials

Your workspace

Images and deployments

SSH connection

How to contribute to the project

https://dojocrypt.tii.ae/

pay your own deployments
ask us to deploy DojoCrypt in your infrastructure

Use Dojocrypt:
in your research
in your lessons

Talk about DojoCrypt!

For all the above, you can reach us out from the Contact us section at dojocrypt.tii.ae.

For any question, feel free to reach us out through the Contact us section at dojocrypt.tii.ae.

Questions?

https://dojocrypt.tii.ae/
https://dojocrypt.tii.ae/

This collection contains short lessons, scripts and tutorials, usually in the form of Jupyter Notebooks, to become familiar with the CLAASP library.

It is advised to start from the introduction_to_claasp folder, for example:

read the claasp_overview.md file to have a quick overview of CLAASP;
read the claasp_basic_introcution.ipynb notebook to have an overview of CLAASP;
read the notebooks in the cipher_evaluation folder to learn how to evaluate a cipher in CLAASP;
read the files in the intro_to_differential_cryptanalysis_from_block_cipher_companion folder to have a basic introduction to differential
cryptanalysis;
check the toy_ciphers folder to see some example of toy ciphers implemented in CLAASP.

The folder did_you_know_that contains a collection of very short scripts to quickly learn how to perform basic cryptanalysis tasks, such as:

find a linear or differential trail
run avalanche tests
find a neural distinguisher
print your test results in a latex table
and many more...

The folder tutorials contains a collection of more in depth tutorials on specific CLAASP modules.

A collection of scripts to learn CLAASP

Introduction to CLAASP

Did you know that?

Tutorials

https://github.com/Crypto-TII/claasp

Time of writing: Pi-day 2025.

CLAASP is a library whose goal is to provide an extensive toolbox gathering state-of-the-art techniques aimed
at simplifying the manual tasks of symmetric cipher designers and analysts.

CLAASP is an opensource library built on top of Sagemath.

It is designed to be

modular
extendable
easy-to-use
generic (allowing the implementation and analysis of a wide range of cipher designs)
automated (input a cipher design and output an analysis of the cipher design with respect to some desired
property).

CLAASP repository: https://github.com/Crypto-TII/claasp
CLAASP readthedocs: https://claasp.readthedocs.io/en/stable/
CLAASP white paper (not updated, better to not use it as a reference): https://eprint.iacr.org/2023/622.pdf
(use readthedocs or the getting_started tutorials)

The CLAASP project started around 2019, and, up to know, it has been mostly funded by the Technology
Innovation Institute (TII) of Abu Dhabi, in the UAE.

Up to this date, it counts more than 50 contributors and collaborators, including bachelor/master/Ph.D.
students, post-docs, professors, software developers, devops engineers.

Among the main institutions involved in the projects:

Technology Innovation Institute, UAE
University of Milan, Italy
Politecnico di Torino, Italy
Radboud University, Netherland

CLAASP: a Cryptographic Library for the
Automated Analysis of Symmetric Primitives

Resources

Who made CLAASP?

https://github.com/Crypto-TII/claasp
https://claasp.readthedocs.io/en/stable/
https://eprint.iacr.org/2023/622.pdf

Nanyang Technological University, Singapore
RomaTre University, Italy
LeanMind, Spain

WARNING: The following tables are work-in-progress.

CASCADA CLAASP CryptoSMT TAGADA

Paper
published in

2022 2023 2016? 2021

Goal
SMT bit-
vector

General Purpose SMT bit-vector
Minizinc/aligned-
SPN focused

Programming
Language

Python Python/SsageMath Python/CommandLine Rust

Cipher
representation

DAG DAG SMT API DAG

#Ciphers 20+ 80+ 20+ 6

Solvers SMT SAT, SMT, MILP, CP SMT CP

Models

Differential,
Rotational-
XOR,
Impossible-
Differential,
Impossible-
rotational-
XOR,
Linear,
Zero-
correlation

Differential, Linear,
Deterministic/Probabilistic
Truncated-Differential,
Impossible-Differential,
Zero-correlation,
Boomerang, Division
Property, Hash Pre-
image, Key-recovery

Differential, Linear,
hash Pre-image, Key-
recovery

Differential,
Truncated-
Differential

Available Models

CLAASP CASCADA CryptoSMT TAGADA

single-key differential cryptanalysis

related-key differential cryptanalysis

How does CLAASP compare with other similar tools?

CLAASP CASCADA CryptoSMT TAGADA

single-key rotational-XOR cryptanalysis ?

related-key rotational-XOR cryptanalysis ? ?

single-key truncated-differential cryptanalysis

related-key truncated-differential cryptanalysis

single-key impossible-differential cryptanalysis ?

related-key impossible-differential
cryptanalysis

?

single-key impossible-rotational-XOR
cryptanalysis

?

related-key impossible-rotational-XOR
cryptanalysis

? ?

linear cryptanalysis ?

single-key zero-correlation cryptanalysis ?

differential-linear cryptanalysis

(three-subset) division property

boomerang distinguisher

hash pre-image

key-recovery

Here is a list of task you can perform with CLAASP (as a user):

1. Cipher management
80+ already implemented ciphers
Create your own cipher using the following components:

a. OR
b. AND
c. XOR
d. NOT
e. Linear/Nonlinear Feedback Shift Register (over any field)
f. S-box

What can you do with CLAASP exactly?

g. Modular Addition
h. Modular Subtraction
i. Constant
j. LinearLayer
k. Shift
l. Rotate

m. Variable Shift
n. Variable Rotate

Manipulate the cipher:
select subcomponents by id or by round and position in the round
remove parts of the cipher, e.g. key-schedule
invert the cipher
...

Analyze the properties of the cipher components
2. Cipher evaluation

Generate the cipher evaluation code or directly evaluate the cipher using:
Python Bitstring
Python Numpy

allows to evaluate multiple inputs simultaneously, especially useful with GPU*
can be used to train neural distinguishers more efficiently

Standard C with BitString class
Standard C with WordString class
Cuda (Coming soon...)

3. Avalanche and Statistical tests
Statistical tests

NIST
DIEHARDER

Avalanche tests
avalanche probability vectors
avalanche dependence
avalanche dependence uniform
avalanche weight
avalanche entropy

Continuous diffusion tests
continuous avalanche factor
continuous diffusion factor
continuous neutrality measure

4. Cipher algebraic models
Model the cipher as a system of Booleab equations, and
try to solve it using Groebner basis calculators from SageMath
Fix values of some variables and find the others, e.g.

compute pre-images,
Perform a partial key-recovery given ciphertext, plaintext and some bits of the key

5. Cipher models for trail search
Models that search for trails, usually implement some or all the following methods (or a variant):

find one trail
find one trail with fixed weight
find all trails with fixed weight
find all trails with weight at most
find the lowest weight trail

The following models are included in CLAASP:

Model SAT SMT MILP CP

Cipher Model

Cipher Model ARX Optimized

XOR Differential

XOR Differential ARX Optimized

XOR Differential Number of Active Sboxes

XOR Differential Trail Search Fixing Active Sboxes

XOR Linear

Bitwise Deterministic Truncated XOR Differential

Bitwise Deterministic Truncated XOR Differential
ARX Optimized

Wordwise Deterministic Truncated XOR Differential

Probabilistic XOR Truncated Differential

Bitwise Impossible XOR Differential

Wordwise Impossible XOR Differential
 (in

progress)

Hybrid Impossible XOR Differential

Boomerang ARX Optimized
 (in

progress)

6. Neural distinguishers
build a neural network blackbox distinguisher
run AutoND pipeline
find good input difference for neural distinguisher
build a neural network differential distinguisher (a-la-Gohr, given an input difference)

7. Print reports

Latex tables
json dictionaries
Python pandas dataframes
Python plotly plots and graphs

At the moment, CLAASP does not support at least the following:

Bit-vector SMT modelling
ModAdd Differential trails, or trails based on other operations
Rotational-XOR
Zero-correlation
Non-trivial and generic automatic key-recovery (still possible to write a script for a specific cipher or to
use the cipher models)
Represent ciphers over non-binary fields (not ideal for algebraic ciphers)
Compile the CLAASP representation to other tools representations
...

The basic block of CLAASP is the description of a cryptographic primitives in the form of a list of connected
components (S-Box, LinearLayer, Constants, Input/Output, etc.).

From this representation, the library can:

generate the Python or C code of the encryption function,
execute a wide range of statistical and avalanche tests on the primitive,
automatically generate SAT, SMT, CP and MILP models to search, for example, differential and linear
trails,
measure algebraic properties of the cipher,
test neural-based distinguishers.

Informally, in CLAASP, a symmetric cipher is represented as a list of "connected components".

By the term cipher component (or simply component) we refer to the building blocks of symmetric ciphers
(S-Boxes, linear layers, word operations, etc.).

We say that two components are connected when the output bits of the first component become the input bits
of the second component.

What can you NOT do with CLAASP?

CLAASP basic idea

A cipher as an acyclic directed graph

claasp_how_to_implement_a_cipher_object

March 17, 2025

1 How to implement a block cipher
Consider the following ToySPN block cipher: - 6-bit block SPN - 6-bit key - non-linear layer with
2 3-bit S-Boxes - linear layer with a 1-bit right rotation - no key schedule - 2 rounds only

You can check the diagram in the figure below:

[1]: from claasp.cipher import Cipher

class ToySPN(Cipher):
def __init__(self):

super().__init__(
family_name="toyspn",
cipher_type="block_cipher",
cipher_inputs=["plaintext", "key"],
cipher_inputs_bit_size=[6, 6],
cipher_output_bit_size=6
)

sbox = [0, 5, 3, 2, 6, 1, 4, 7]

1

self.add_round()
xor = self.add_XOR_component(["plaintext",␣↪"key"],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component([xor.id], [[0, 1, 2]], 3, sbox)
sbox2 = self.add_SBOX_component([xor.id], [[3, 4, 5]], 3, sbox)
rotate = self.add_rotate_component([sbox1.id, sbox2.id],[[0, 1, 2], [0,␣↪1, 2]], 6, 1)

self.add_round_output_component([rotate.id], [[0, 1, 2, 3, 4, 5]], 6)

self.add_round()
xor = self.add_XOR_component([rotate.id,␣↪"key"],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component([xor.id], [[0, 1, 2]], 3, sbox)
sbox2 = self.add_SBOX_component([xor.id], [[3, 4, 5]], 3, sbox)
rotate = self.add_rotate_component([sbox1.id, sbox2.id],[[0, 1, 2], [0,␣↪1, 2]], 6, 1)

self.add_cipher_output_component([rotate.id], [[0, 1, 2, 3, 4, 5]], 6)

Let us know instantiate the cipher and evaluate it over a plaintext and a key

[8]: toyspn = ToySPN()
plaintext = 0x3F
key = 0x31
print(f'ciphertext = {hex(toyspn.evaluate([plaintext, key]))}')

ciphertext = 0x3b

[]:

2

claasp_basic_introduction

March 19, 2025

1 CLAASP: a basic introduction
1.1 Components, Ciphers and Solvers
First, let us see which components, ciphers and solvers are available in CLAASP.

First we need to import all classes from the CLAASP package.

[2]: import os
import importlib
import inspect

def import_all_classes_from_package(package_name, package_dir):
all_classes = []

for root, _, files in os.walk(package_dir):
for file in files:

if file.endswith('.py') and file != '__init__.py':
module_rel_path = os.path.relpath(os.path.join(root, file),␣↪package_dir)
module_name, _ = os.path.splitext(module_rel_path.replace(os.↪path.sep, '.'))

full_module_name = f"{package_name}.{module_name}"
try:

imported_module = importlib.import_module(full_module_name)
module_classes = inspect.getmembers(imported_module,␣↪inspect.isclass)
all_classes.extend(module_classes)

except Exception as e:
print(f"Error importing module '{full_module_name}': {e}")

return all_classes

package_name = 'claasp' # name of the package
package_dir = '/home/sage/tii-claasp/claasp' # directory path of the package
all_classes = import_all_classes_from_package(package_name, package_dir)

2025-03-14 23:50:47.413146: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not

1

find cuda drivers on your machine, GPU will not be used.
2025-03-14 23:50:47.459920: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not
find cuda drivers on your machine, GPU will not be used.
2025-03-14 23:50:48.256404: W
tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not
find TensorRT

Now we can print all CLAASP components:

[24]: from claasp.component import Component
from claasp.components.modular_component import Modular
from claasp.components.multi_input_non_linear_logical_operator_component import␣↪MultiInputNonlinearLogicalOperator
from claasp.components.linear_layer_component import LinearLayer

component_subclasses = Component.__subclasses__()
modular_subclasses = Modular.__subclasses__() # parent class of ModAdd and␣↪ModSub
minllo_subclasses = MultiInputNonlinearLogicalOperator.__subclasses__() #␣↪parent class of AND, OR
linearlayer_subclasses = LinearLayer.__subclasses__() # parent class of Sigma,␣↪Reverse, MixColumn, Permutation, ThetaXoodoo, ThetaKeccak

all_subclasses = minllo_subclasses + component_subclasses +␣↪linearlayer_subclasses + modular_subclasses

for component in all_subclasses:
if not component.__name__ in ['CipherOutput', 'Concatenate', 'Modular',␣↪'MultiInputNonlinearLogicalOperator']: # concatenate is a legacy component

print(component.__name__)
print()

OR
AND
XOR
NOT
FSR
SBOX
SHIFT
LinearLayer
Rotate
Constant
VariableShift
VariableRotate
Sigma
Reverse
MixColumn
Permutation

2

ThetaXoodoo
ThetaKeccak
MODADD
MODSUB

And then all CLAASP ciphers:

[4]: from claasp.cipher import Cipher

counter = 1
for cipher in Cipher.__subclasses__():

print(f'{counter:>3} Cipher name: {cipher.__name__}')
counter += 1

print()

1 Cipher name: ThreefishBlockCipher
2 Cipher name: AESBlockCipher
3 Cipher name: AradiBlockCipher
4 Cipher name: AradiBlockCipherSBox
5 Cipher name: AradiBlockCipherSBoxAndCompactLinearMap
6 Cipher name: BalletBlockCipher
7 Cipher name: BEA1BlockCipher
8 Cipher name: DESBlockCipher
9 Cipher name: DESExactKeyLengthBlockCipher

10 Cipher name: HightBlockCipher
11 Cipher name: KasumiBlockCipher
12 Cipher name: LBlockBlockCipher
13 Cipher name: LeaBlockCipher
14 Cipher name: LowMCBlockCipher
15 Cipher name: MidoriBlockCipher
16 Cipher name: PresentBlockCipher
17 Cipher name: PrinceBlockCipher
18 Cipher name: PrinceV2BlockCipher
19 Cipher name: QARMAv2BlockCipher
20 Cipher name: QARMAv2MixColumnBlockCipher
21 Cipher name: RaidenBlockCipher
22 Cipher name: RC5BlockCipher
23 Cipher name: SCARFBlockCipher
24 Cipher name: SimeckBlockCipher
25 Cipher name: SimeckSboxBlockCipher
26 Cipher name: SimonBlockCipher
27 Cipher name: SimonSboxBlockCipher
28 Cipher name: SkinnyBlockCipher
29 Cipher name: SparxBlockCipher
30 Cipher name: SpeckBlockCipher
31 Cipher name: SpeedyBlockCipher
32 Cipher name: TeaBlockCipher
33 Cipher name: TwineBlockCipher

3

34 Cipher name: TwofishBlockCipher
35 Cipher name: UblockBlockCipher
36 Cipher name: XTeaBlockCipher
37 Cipher name: Blake2HashFunction
38 Cipher name: BlakeHashFunction
39 Cipher name: MD5HashFunction
40 Cipher name: SHA1HashFunction
41 Cipher name: SHA2HashFunction
42 Cipher name: WhirlpoolHashFunction
43 Cipher name: AsconPermutation
44 Cipher name: AsconSboxSigmaNoMatrixPermutation
45 Cipher name: AsconSboxSigmaPermutation
46 Cipher name: ChachaPermutation
47 Cipher name: GastonPermutation
48 Cipher name: GastonSboxPermutation
49 Cipher name: GiftPermutation
50 Cipher name: GiftSboxPermutation
51 Cipher name: GimliPermutation
52 Cipher name: GimliSboxPermutation
53 Cipher name: GrainCorePermutation
54 Cipher name: KeccakInvertiblePermutation
55 Cipher name: KeccakPermutation
56 Cipher name: KeccakSboxPermutation
57 Cipher name: PhotonPermutation
58 Cipher name: SalsaPermutation
59 Cipher name: SparklePermutation
60 Cipher name: SpongentPiFSRPermutation
61 Cipher name: SpongentPiPermutation
62 Cipher name: SpongentPiPrecomputationPermutation
63 Cipher name: TinyJambuWordBasedPermutation
64 Cipher name: TinyJambuFSRWordBasedPermutation
65 Cipher name: TinyJambuPermutation
66 Cipher name: XoodooInvertiblePermutation
67 Cipher name: XoodooPermutation
68 Cipher name: XoodooSboxPermutation
69 Cipher name: A51StreamCipher
70 Cipher name: A52StreamCipher
71 Cipher name: BiviumStreamCipher
72 Cipher name: BluetoothStreamCipherE0
73 Cipher name: Snow3GStreamCipher
74 Cipher name: TriviumStreamCipher
75 Cipher name: ZucStreamCipher
76 Cipher name: ConstantBlockCipher
77 Cipher name: FancyBlockCipher
78 Cipher name: IdentityBlockCipher
79 Cipher name: ToyCipherFour
80 Cipher name: ToyFeistel
81 Cipher name: ToySPN1

4

82 Cipher name: ToySPN2

To print the available solvers, we do as follows:

NOTE: internal solvers are the ones that are called through the SageMath interface.

[14]: from claasp.cipher_modules.models.sat.solvers import SAT_SOLVERS_INTERNAL,␣↪SAT_SOLVERS_EXTERNAL
from claasp.cipher_modules.models.smt.solvers import SMT_SOLVERS_INTERNAL,␣↪SMT_SOLVERS_EXTERNAL
from claasp.cipher_modules.models.milp.solvers import MILP_SOLVERS_INTERNAL,␣↪MILP_SOLVERS_EXTERNAL
from claasp.cipher_modules.models.cp.solvers import CP_SOLVERS_INTERNAL,␣↪CP_SOLVERS_EXTERNAL

print("SAT solvers")
print(f"internal: {[solver['solver_name'] for solver in SAT_SOLVERS_INTERNAL]}")
print(f"external: {[solver['solver_name'] for solver in SAT_SOLVERS_EXTERNAL]}")

print("SMT solvers")
print(f"internal: {[solver['solver_name'] for solver in SMT_SOLVERS_INTERNAL]}")
print(f"external: {[solver['solver_name'] for solver in SMT_SOLVERS_EXTERNAL]}")

print("MILP solvers")
print(f"internal: {[solver['solver_name'] for solver in␣↪MILP_SOLVERS_INTERNAL]}")
print(f"external: {[solver['solver_name'] for solver in␣↪MILP_SOLVERS_EXTERNAL]}")

print("CP solvers")
print(f"internal: {[solver['solver_name'] for solver in CP_SOLVERS_INTERNAL]}")
print(f"external: {[solver['solver_name'] for solver in CP_SOLVERS_EXTERNAL]}")

SAT solvers
internal: ['cryptominisat', 'picosat', 'glucose', 'glucose-syrup']
external: ['CADICAL_EXT', 'CRYPTOMINISAT_EXT', 'GLUCOSE_EXT',
'GLUCOSE_SYRUP_EXT', 'KISSAT_EXT', 'PARKISSAT_EXT', 'MATHSAT_EXT',
'MINISAT_EXT', 'YICES_SAT_EXT']
SMT solvers
internal: []
external: ['MATHSAT_EXT', 'YICES_EXT', 'Z3_EXT']
MILP solvers
internal: ['GLPK', 'GLPK/exact', 'Coin', 'CVXOPT', 'Gurobi', 'PPL',
'InteractiveLP']
external: ['GUROBI_EXT', 'GLPK_EXT', 'SCIP_EXT', 'CPLEX_EXT']
CP solvers
internal: ['choco', 'chuffed', 'coin-bc', 'cplex', 'findmus', 'gecode',
'globalizer', 'gurobi', 'scip', 'Xor', 'xpress']

5

external: ['Chuffed', 'gecode', 'Xor', 'coin-bc', 'choco']

1.2 How to implement the XOR Block Cipher
We implement a class representing the XOR Block Cipher, taking one key and one plaintext of the
same bit size as input, and returning their bitwise sum modulo 2 (XOR).

[1]: from claasp.cipher import Cipher

class XorCipher(Cipher):
def __init__(self, block_size=128):

super().__init__(
family_name="xorcipher",
cipher_type="block_cipher",
cipher_inputs=["plaintext", "key"],
cipher_inputs_bit_size=[block_size, block_size],
cipher_output_bit_size=block_size
)

self.add_round()
xor = self.add_XOR_component(

["plaintext", "key"],
[

[i for i in range(block_size)],
[i for i in range(block_size)]

],
block_size)

self.add_cipher_output_component(
[xor.id],
[

[i for i in range(block_size)]
],
block_size)

The Cipher class contains methods that allow us to evaluate the cipher over a set of integers
representing the input bitstring. For example - the integer 1 represents the bitstring 0b1. - the

6

integer 15 represents the bitstring 0b1111. - the integer 0xAB represents the bitstring 0b10101011.
and so on… Let us recall that, in Python, one can represent integers using base 10, 16 or 2. For
example, the number 15, can be represented as 15, 0xF, 0b1111, respectively in base 10, 16 and 2.
One can also print the representation in base 16 and 2 by simply writing

print(hex(15))
print(bin(15))

Let us know test the cipher:

[2]: cipher = XorCipher(block_size=1)
key = 0b1
plaintext = 0b1
ciphertext = 0b0
print(f'{bin(cipher.evaluate([key, plaintext])) = }')
print(cipher.evaluate([key, plaintext]) == ciphertext)

cipher = XorCipher(block_size=128)
key = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
plaintext = 0x55555555555555555555555555555555
ciphertext = 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
print(f'{hex(cipher.evaluate([key, plaintext])) = }')
print(cipher.evaluate([key, plaintext]) == ciphertext)

bin(cipher.evaluate([key, plaintext])) = '0b0'
True
hex(cipher.evaluate([key, plaintext])) = '0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
True

1.3 Check cipher properties
It is possible to check the cipher properties by calling the available cipher methods

[3]: cipher = XorCipher(block_size=128)
cipher.as_python_dictionary()

[3]: {'cipher_id': 'xorcipher_p128_k128_o128_r1',
'cipher_type': 'block_cipher',
'cipher_inputs': ['plaintext', 'key'],
'cipher_inputs_bit_size': [128, 128],
'cipher_output_bit_size': 128,
'cipher_number_of_rounds': 1,
'cipher_rounds': [[{'id': 'xor_0_0',

'type': 'word_operation',
'input_bit_size': 256,
'input_id_link': ['plaintext', 'key'],
'input_bit_positions': [[0,

1,
2,

7

3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,

8

50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,

9

97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127],

[0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,

10

16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,

11

63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,

12

110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127]],

'output_bit_size': 128,
'description': ['XOR', 2]},

{'id': 'cipher_output_0_1',
'type': 'cipher_output',
'input_bit_size': 128,
'input_id_link': ['xor_0_0'],
'input_bit_positions': [[0,

1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,

13

23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,

14

70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,

15

117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127]],

'output_bit_size': 128,
'description': ['cipher_output']}]],

'cipher_reference_code': None}

We can also retrieve the components of the cipher, given their round number and the relative
number of the component within the round (Remember to count from 0!):

[4]: cipher.get_number_of_components_in_round(0)

[4]: 2

[5]: cipher.component_from(0,0).as_python_dictionary()
cipher.component_from(0,1).as_python_dictionary()

[5]: {'id': 'cipher_output_0_1',
'type': 'cipher_output',
'input_bit_size': 128,
'input_id_link': ['xor_0_0'],
'input_bit_positions': [[0,

1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,

16

19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,

17

66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,

18

113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127]],

'output_bit_size': 128,
'description': ['cipher_output']}

or given their ID:

[19]: cipher.get_component_from_id("xor_0_0").as_python_dictionary()

[19]: {'id': 'xor_0_0',
'type': 'word_operation',
'input_bit_size': 16,
'input_id_link': ['plaintext', 'key'],
'input_bit_positions': [[0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 2, 3, 4, 5, 6, 7]],
'output_bit_size': 8,
'description': ['XOR', 2]}

We can retrieve all the components of the cipher, or all their IDs:

[15]: cipher = XorCipher(block_size=8)
cipher.get_all_components()

[15]: [<claasp.components.xor_component.XOR object at 0x7fc73e9014e0>,
<claasp.components.cipher_output_component.CipherOutput object at

0x7fc75c4478b0>]

[16]: cipher.get_all_components_ids()

[16]: ['xor_0_0', 'cipher_output_0_1']

We can check if a cipher belongs to a specific family:

[23]: print(f'{cipher.is_andrx() = }')
print(f'{cipher.is_arx() = }')
print(f'{cipher.is_spn() = }')

19

cipher.is_andrx() = True
cipher.is_arx() = True
cipher.is_spn() = False

1.4 Cipher Inverse
CLAASP can automatically compute the inverse of a cipher. This is done, under the hood, by
inverting the underlying graph and its components.

Let us see it in action while inverting the XORCipher:

[24]: xorcipher = XorCipher(block_size=8)

xorcipher_inverse = cipher.cipher_inverse()

plaintext = 0xFF
key = 0xFF
ciphertext = cipher.evaluate([plaintext, key])

xorcipher_inv = cipher.cipher_inverse()

xorcipher_inv.evaluate([ciphertext, key]) == plaintext

[24]: True

1.5 A cipher as a system of Boolean polynomials
CLAASP allows to express the cipher as a system of Boolean polynomials. The variables represent
the input (denoted by an “x” postfix) and the output (denoted by an “y” postfix) bits of each
component, including the input and the output components of the cipher.

[25]: cipher.polynomial_system()

[25]: [key_y0 + plaintext_y0 + cipher_output_0_1_x0, key_y1 + plaintext_y1 +
cipher_output_0_1_x1, key_y2 + plaintext_y2 + cipher_output_0_1_x2, key_y3 +
plaintext_y3 + cipher_output_0_1_x3, key_y4 + plaintext_y4 +
cipher_output_0_1_x4, key_y5 + plaintext_y5 + cipher_output_0_1_x5, key_y6 +
plaintext_y6 + cipher_output_0_1_x6, key_y7 + plaintext_y7 +
cipher_output_0_1_x7]

20

