Ínnía -

Minimalist model for Impossible Differentials

Patrick Derbez¹. Marie Euler^{1,2}

¹ Univ Rennes, Inria, CNRS, IRISA 2 DGA

Únría Université

Impossible Differential Cryptanalysis

Setup

top
$$P[\Delta_{in} \to \Delta_X] = 2^{-c_{in}}$$

middle $P[\Delta_X \to \Delta_Y] = 0$

bottom
$$P[\Delta_{out} \rightarrow \Delta_Y] = 2^{-c_{out}}$$

Main idea

If a candidate key partially encrypts/decrypts a given pair to an impossible differential then this key is **wrong**.

The Advanced Standard Encryption

- Standardized in 2001 for 3 key lengths: 128, 192 and 256 bits
- Block size of 128 bits: 4×4 matrix of bytes
- An AES round applies $MC \circ SR \circ SB \circ AK$ to the state
- No MixColumns in the last round

Impossible Differential on AES

Impossible Differential on AES

Impossible Differential on AES

Contradiction

Ínnía -

Impossible Differential on AES

• Basic model v1

- Fix both the input and output differences
- Propagate them with probability 1

The differential is impossible if and only if the model has no solution

Ínría_

Ínría_

Basic model v1

- Fix both the input and output differences
- Propagate them with probability 1

The differential is impossible if and only if the model has no solution

• Problems

- · Both the input and the output differences have to be fixed
 - In the arbitrary S-box model, only inputs and outputs with 1 active S-box have to be tested.
 [SLG+16]
- Negative model \longrightarrow unsuitable to search for attacks

[[]SLG + 16] Sun et al. Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. EUROCRYPT 2016

- Basic model v2
 - Fix both the input and output differences
 - Search for a differential characteristic

The differential is impossible if and only if the model has no solution

• Problems

- Both the input and the output differences have to be fixed
 - In the arbitrary S-box model, only inputs and outputs with 1 active S-box have to be tested.
- Negative model \longrightarrow unsuitable to search for attacks

Ínnía -

[ST17]

 [[]SLG + 16] Sun et al. Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. EUROCRYPT 2016
 [ST17] Sasaki et al. New impossible differential search tool from design and cryptanalysis aspects. EUROCRYPT 2017

• Model v3

[HSE23]

Ínnín -

- 2 trails propagating with probability 1
- Enumerate all possible contradictions

The differential is impossible if and only if there is at least one contradiction

[HSE23] Hadipour et al. Finding the Impossible: Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral Attacks. EUROCRYPT 2023

- Model v3
 - 2 trails propagating with probability 1
 - Enumerate all possible contradictions

The differential is impossible if and only if there is at least one contradiction

• Limits

- One boolean variable per contradiction
- Only handle direct contradictions

[HSE23] Hadipour et al. Finding the Impossible: Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral Attacks. EUROCRYPT 2023

[HSE23]

ID on AES - Indirect Contradictions

ID on AES - Indirect Contradictions

ID on AES - Indirect Contradictions

States must be fully inactive

inactive

unknown

ID on AES - Indirect Contradictions

States must be fully inactive

inactive

unknown

Model for Indirect Contradictions

- New model by Chakraborty et al. [CHNE24]
- Second propagation of information from a middle round

[CHNE24] Chakraborty et al. Finding complete impossible differential attacks on AndRX ciphers and efficient distinguishers for ARX designs. ToSC 2024-3

Model for Indirect Contradictions

- New model by Chakraborty et al. [CHNE24]
- Second propagation of information from a middle round

Are all indirect contradictions handled?

[CHNE24] Chakraborty et al. Finding complete impossible differential attacks on AndRX ciphers and efficient distinguishers for ARX designs. ToSC 2024-3

Innío

A Counter-Example

Let consider the two following S-boxes:

- $S_1 = [2, 9, 15, 4, 11, 14, 1, 2, 0, 3, 6, 13, 5, 8, 10, 7]$
- $S_2 = [1, 11, 6, 0, 14, 13, 5, 10, 12, 2, 9, 7, 3, 8, 15, 4]$

Claim: the model of [CHNE24] cannot prove the impossibility of the transition

1110
$$\xrightarrow{S_1} \xrightarrow{S_2}$$
 1100

Innío

A Counter-Example

Let consider the two following S-boxes:

- $S_1 = [2, 9, 15, 4, 11, 14, 1, 2, 0, 3, 6, 13, 5, 8, 10, 7]$
- $S_2 = [1, 11, 6, 0, 14, 13, 5, 10, 12, 2, 9, 7, 3, 8, 15, 4]$

Claim: the model of [CHNE24] cannot prove the impossibility of the transition

1110
$$\xrightarrow{S_1} \xrightarrow{S_2}$$
 1100

• 1110
$$\xrightarrow{S_1} 0 * * *$$

• 1100 $\xrightarrow{S_2^{-1}} * * * 0$

Ingia

A Counter-Example

Let consider the two following S-boxes:

- $S_1 = [2, 9, 15, 4, 11, 14, 1, 2, 0, 3, 6, 13, 5, 8, 10, 7]$
- $S_2 = [1, 11, 6, 0, 14, 13, 5, 10, 12, 2, 9, 7, 3, 8, 15, 4]$

Claim: the model of [CHNE24] cannot prove the impossibility of the transition

1110
$$\xrightarrow{S_1} \xrightarrow{S_2}$$
 1100

• 0**0 $\xrightarrow{S_1^{-1}}$ 1110 and 0**0 $\xrightarrow{S_2}$ 1100 are valid

• 1110 $\xrightarrow{S_1} 0 * * *$ • 1100 $\xrightarrow{S_2^{-1}} * * * 0$

- Need extra deduction steps:
 - $0 # * 0 \xrightarrow{S_1^{-1}}$ 1110 valid only if input is 00 * 0
 - $0 # * 0 \xrightarrow{S_2} 1100$ valid only if input is 0 * 00

Model for Indirect Contradictions

- New model by Chakraborty et al. [CHNE24]
- Second propagation of information from a middle round

Are all indirect contradictions handled?

[CHNE24] Chakraborty et al. Finding complete impossible differential attacks on AndRX ciphers and efficient distinguishers for ARX designs. ToSC 2024-3

Ínnía

A New Idea

Do not search for ID but for probable ID

- An indirect contradiction implies that some *unknown* bits in both trails are resolved to either 0 and/or 1
- Search for pairs of input/output differences generating new 0s or 1s
- Check a posteriori whether the differential is really impossible

New zeros are created

naío

Positive model!

MILP Model with Callbacks

Generator model

- Search for ID distinguisher/attack against a target
- Constraints for the ID distinguisher:
 - 1. at least a direct contradiction
 - 2. or at least a new 0 or 1 is created when merging the trails
- Might output false positives ...

Validator model

- Called by the generator model on its solutions
- Verifies the validity of the distinguisher, otherwise discards it in the generator model
- Does not need to be a positive model and can be as precise as we wish (e.g. [ST17], quasidifferentials, ...)

Ínnía -

1s propagate badly through ciphers

active

inactive

unknown

Simplifying the Generator Model

1s propagate badly through ciphers \longrightarrow **Remove them!**

A differential is impossible iff the only solution is to set all differences to zero

active

inactive

unknown

1s propagate badly through ciphers \longrightarrow **Remove them!**

A differential is impossible iff the only solution is to set all differences to zero

Generator model

- Search for ID distinguisher/attack against a target
- Constraints for the ID distinguisher:
 - 1. at least a direct contradiction
 - 2. or at least a new 0 or 1 is created when merging the trails

Positive model!

• Might output false positives ...

1s propagate badly through ciphers \longrightarrow **Remove them!**

A differential is impossible iff the only solution is to set all differences to zero

Generator model

- Search for ID distinguisher/attack against a target
- Constraints for the ID distinguisher:
 - 1. at least a direct contradiction
 - 2. or at least a new 0 or 1 is created when merging the trails

Positive model!

• Might output false positives ...

1s propagate badly through ciphers \longrightarrow **Remove them!**

A differential is impossible iff the only solution is to set all differences to zero

Generator model

- Search for ID distinguisher/attack against a target
- Constraints for the ID distinguisher:
 - 1. at least a direct contradiction
 - at least a direct contradiction
 or at least a new 0 or 1 is created when merging the trails

Might output false positives ...

Limits

- Bit-oriented ciphers ... e.g. for PRESENT, the transition 1001 $\xrightarrow{S} ***0$ holds with probability 1 but not $*00* \xrightarrow{S} ***0$
- Solution: allow $*00* \xrightarrow{S} ***0$ and delegate to the validator model

Ínnín -

Results

- We were able to retrieve the best attacks/distinguishers on many ciphers: AES, SKINNY, Midori, SIMON, SIMECK, SPECK
- We also applied it on ARADI and found a new 13-round attack with complexity $2^{224.47}$
- Number of false positives:

Version	r_D	Generated candidates (Valid ones)	Time	Deduced inactive cells	Active bits
Simeck-32	11	7 (2)	0.8s	6	2
	12	805 (0)	37s	-	-
Simeck-48	15	8 (1)	1s	4	2
	16	22 (0)	2.7s	-	-
Simeck-64	17	25 (1)	5s	6	2
	18	184 (0)	30s	-	-

(a) Objective function : maximize the number of deduced inactive cells

- A new, more complete, approach for indirect contradictions
- Searching for probable ID distinguishers instead of ID distinguisher
- Simplification of the model

Open question: Can we apply the same strategy to other cryptanalysis techniques?

- A new, more complete, approach for indirect contradictions
- Searching for probable ID distinguishers instead of ID distinguisher
- Simplification of the model

Open question: Can we apply the same strategy to other cryptanalysis techniques?

Thank you for your attention!