tutorial pre-executed-automating-neural-cryptanalysis

March 27, 2025

0.1 Automating Neural Cryptanalysis
In this notebook, we review techniques to automatize neural cryptanalysis.

e Neural cryptanalysis overview

« Automating the input difference selection (in CLAASP)

o Automating the long and short range dependencies (in CLAASP)
o Training the whole pipeline (in CLAASP)

o Using your own (non-CLAASP) implementations in the framework

0.1.1 Neural Cryptanalysis Overview
I .

P L . . Random data Encrypted data
= Acryptanalytic distinguishing attack allows to distinguish . ‘

encrypted data from random data. Feature

— | T—
» Differential Cryptanalysis: “... analyses the effect of particular
differences in plaintext pairs...” [BS91]. PoR =0 ——————————— (G = Ex(R).C1 = Ex(P))
T S N b
= A Differential Neural Distinquisher is a deep neural network
which performs the differential cryptanalytic task [Goh19] (Co = Ex(Po),Ci = Ex(P)) —» neural distinguisher ——» Po@ P, 26

[Goh19] Gohr, Aron. "Improving Attacks on Round-Reduced Speck32/64
using Deep Learning.” Advances in Cryptology—-CRYPTO 2019 .. contrary to conventional wisdom, machine learning ean produce very powerful
cryptographic distinguishers

...neural networks on SPECKS2 reduced to 8-rounds reach better accuracy than
pure differential distinguishers

Ty i A

P

wplegity of the 11-round key recovery attack

7 AF Y TR
Traditional: Full DDT-based Distinguisher

34 GB of distribution data 300 core-days of
Jor each. round r=3...8 computation

In neural cryptanalysis, introduced by A. Gohr at CRYPTO 2019, a neural network is used to
distinguish pairs of ciphertexts that correspond to the encryption of related plaintexts under the
same key from random.

Roenape(Conun. Biocke wora sizes) (2 I 2 Y Y I I I

Permute((2,1))

Initial convolution output of Permute ConvlD layer output of ConvlD
ConvaD(f=32, k=1, 'L2')+BN+RelLU ith =32, k-1
Residual blocks 4 with f=32, k= =32 feature maps
Define 'shortcut' = 1 =
for i in range(depth): [Lo Ro| Ly | Ry |V— - - -

Conv1D(f=32, k=3, 'L2')+BN+RelU | wo0Lo +w10R0 + w20 Lo + w30 Ry +bo

ConviD(f=32, k=3, 'L2')+BN+RelU Li| By | Ly | Ry

Add 'shortcut’ A

Define 'shortcut' Lo|fo) Lo | By
Prediction head o O T 16 16{ FOUN [PUURN DR (PO ORR P
Flatten() 1
Dense(64, 'L2')+BN+ReLU Lis| | Lo R
Dense(64, 'L2')+BN+RelU [L14 N
Dense(1, 'sigmoid activation', 'L2') —— wo1L14 + w11 Ria + wn Ly + ws1 Ry, + by

Lisf s Lis| s \

These distinguishers have nice properties:

e They operate in a block-box setting

o Low data complexity (A single pair is sufficient to distinguish SPECK32-8 with over 50%
accuracy)

o Multiple differential /differential linear ‘for free’

o Possibly insightful wrong key response profile (see example below, which shows the variation
in the output of the neural distinguisher for pairs of SPECK ciphertexts in which the last
round is decrypted with a key that differs from the original key by different values)

Mean response

0 20000 40000 60000
Difference to real key

Applications of neural cryptanalysis to different ciphers, or under different settings (e.g., multiple

pairs, rotional XOR, etc...) can be tedious, as the training is sensitive to a lot of hyperparameters
that require significant finetuning and optimisation to obtain competitive results. In a FSE 2024
paper, we investigated the following question:

How to evaluate the resistance of a cipher to neural cryptanalysis automatically?
The resulting framework, AutoND (https://github.com/Crypto-TII/AutoND), provides a generic,
‘click-of-a-button’ approach that eliminates the need for any human intervention besides providing
an implementation of the cipher, while remaining competitive with dedicated approaches.

Primitive Arch. Setting® Trn. Val. AutoND Rounds Acc. Ref.
SPECK32 MLP 2-1-6-R 227.64 926.64 - 3" 0.79 [YK21]
BGPT21
BGPT21
[CSYY22]
ResNet 2-1-CT-R 23149 219.93 - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 23149 21993 v 8 0.514 This work
[HRCF21]
SPECK64 DBitNet 2-1-CT-R 22325 21993 v 8 0.537 This work
HRCF21
SPECK128 DBitNet 2-1-CT-R 22325 91993 v 10 0.592 This work
SIMON32 MLP 2-1-6-R 224 g6t - 5" 0.570 [YK21]
SZM20]
ResNet 2-1-CT-R 2232 219.93 v 9 0.661 [GLN23]|
HRCF21
SENet 2-1-A-R 23117 929.17 - 11 0.517 [BGL*22]
DBitNet 2-1-CT-R 231709 21993 v 11 0.518 This work
ResNet 2-1-CT-R 2%2758 223.2 - 11 0.520 [GLN23]
LLS*23]
SIMONG64 HRCF21

DBitNet 2-1-CT-R 22325 919.93 7 13 0.518 This work

LLS*23
SIMON128 DBitNet 2-1-CT-R 22325 919.93 v 20 0.506 This work
GIMLI MLP 2-2-§-D 2176 9143 - 8 0.510 [BBCD21]
DBitNet 2-1-CT-R 22325 919.93 Va 11 0.527 This work
HIGHT DBitNet 2-1-CT-R 22325 91993 i 10 0.751 This work
HIGHT®X DBitNet 2-1-CT-R 22325 91993 v 14 0.563 This work
KATAN ResNet 2-1-6-R 22325 219.93 - 51 0.533 [LCLH22]
[LCLH22]

ResNet 2-1-CT-R 22325 919.93 v 66 0.505 [GLN23]
DBitNet 2-1-CT-R 92325 919.93 v 69 0.505 This work

PRESENT ResNet 2-1-CT-R 2226 919.93 v 7 0.563 [GLN23]
|[CSYY22]
DBitNet 2-1-CT-R 923.25 919.93 v 0.509 This work

TEA™> "™ MLP 2.1.CT-Rt 21993 913.28
. DBitNet 2-1-CT-R 92325 19.93
XTEA™ DBitNet 2-1-CT-R 923.25 519.93

LEA DBitNet 2-1-CT-R 22325 921993

0.563 This work
0.598 This work

11 0.511 This work

9
4 0.545 [BR21]
5
5

AN LN

The AutoND framework automates 3 main aspects of neural cryptanalysis:

o Input difference selection
e Dataset constrution and reshaping
e Training pipeline

0.1.2 Input Difference Selection

BRoP =5 B 1
_ ., Eu = i’\ (1;0) 5 neural distinguisher — G*bes)
Py Py — rand IR RN Glo, Repls
e.g., 5 rounds of 0 (no)

SPECK32

Analyze G of

n, and Quan Quan Tan. A round 5

UROCRYPT 2

[BGPT21] Adrien
Deeper Look at M:

David Gérault, Thomas
rning-Based Cryptanaly:

[BGPT21] What makes & a good input difference? 3 rounds: 10 = % s s s 00 s s sk s 5 00 10 5 # 5 # % 00 % % % % x 10

+ Explainability
What is the neural distinguisher learning?
The input difference to the best differential characteristic is, at least
for SPECK, not a good choice for neural distinguishers.
General open question in machine learning.

+ Analyze easy samples G

4 rounds: 10 = % s * k 10 % sk ko 10 10 % % % % % 10 % % % % % 00

Truncated Differential from [BGPT21] for § =0x0040,/0000

In AutoND, we use an evolutionary algorithm to identify input difference that leads to high prob-
ability truncated differentials (using the probabilities of the individual output difference bits as a
proxy metric, combined into a bias score). In CLAASP, a slightly modified version is implemented:

def find_good_input_difference_for_neural_distinguisher(self, difference_positions,
initial_population=32, number_of_gener
nb_samples=10 ** 3, previous_generatio:
verbose=False) :

Return good neural distinguisher input differences for a cipher, based on the AutoND pipel.

INPUT:
- ""difference_positions”™ " -- **table of booleans**; one for each input to the cipher. Tru
differences are allowed
- “Tinitial_population™~ -- **integer** (default: “327); parameter of the evolutionary alg
- “number_of_generations ~ -- **xinteger** (default: “507); number of iterations of the ev
- “"nb_samples” -- **integer** (default: “10007); number of samples for testing each inpu
- ““previous_generation™ " -- (default: “None’); optional: initial table of differences to -
- ““verbose ~ -- **boolean** (default: “False™); verbosity

(The score formula a weighted sum of bias scores accross rounds)

Definition 2 (Bias score). Let E: F§ x F§ — FJ be a block cipher, and § € F} be an
input difference. The bias score for 4, b*(§) is the sum of the biases of each bit position j
in the output difference, computed for ¢ samples i.e.,

| Z (Ek,(X:) © Eg,(X; ©9)); |
Y o5 =0 . |
| |
| |

n—1

bf

33|'—‘

J=0

[1]: from claasp.ciphers.block_ciphers.speck_block_cipher import SpeckBlockCipher
from claasp.cipher_modules.neural_network_tests import NeuralNetworkTests

plain_bits=32

key_bits=64

speck = SpeckBlockCipher(block_bit_size=plain_bits, key_bit_size=key_bits)

tester = NeuralNetworkTests(speck)

diff, scores, highest_round = tester.
~find_good_input_difference_for_neural_distinguisher([True, False], verbose =,
~True, number_of_generations=5) # random

2025-03-15 08:00:32.105510: I tensorflow/core/util/port.cc:110] oneDNN custom
operations are on. You may see slightly different numerical results due to
floating-point round-off errors from different computation orders. To turn them
off, set the environment variable “TF_ENABLE_ONEDNN_OPTS=0".

2025-03-15 08:00:32.150127: I tensorflow/core/platform/cpu_feature_guard.cc:182]
This TensorFlow binary is optimized to use available CPU instructions in
performance-critical operations.

To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other
operations, rebuild TensorFlow with the appropriate compiler flags.

2025-03-15 08:00:32.861161: W
tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not
find TensorRT

Generation 0/5, 1602 nodes explored, 32 current, best is ['0x82591e0a’,
'0x3761837c', 'Oxff0616fb', '0x7e60877f'] with [0.38703125 0.38984375 0.414
0.4701875]

Generation 1/5, 2157 nodes explored, 32 current, best is ['0x80', '0x8000000',
'0x20000000', '0x400000'] with [1.80709375 2.23053125 2.261375 3.4943125]
Generation 2/5, 2688 nodes explored, 32 current, best is ['0x8000000',
'0x20000000', '0x408000', '0x400000'] with [2.23053125 2.261375 3.03715625
3.4943125]

Generation 3/5, 3043 nodes explored, 32 current, best is ['0x200000',
'0x600000', '0x408000', '0x400000'] with [2.59509375 2.6073125 3.03715625
3.4943125]

Generation 4/5, 3260 nodes explored, 32 current, best is ['0x200000°',
'0x600000', '0x408000', '0x400000'] with [2.59509375 2.6073125 3.03715625
3.4943125]

The highest reached round was 6

The best differences found by the optimizer are..

0x400000 , with score 3.4943125

0x408000 , with score 3.03715625

0x600000 , with score 2.6073125

0x200000 , with score 2.5950937499999998

0x8000 , with score 2.3938125

0x20000000 , with score 2.261375

0x8000000 , with score 2.2305312500000003

0x10200 , with score 2.2030000000000003

0x40000080 , with score 2.1684062500000003

0x10000 , with score 1.9855625

[2]: delta_in = diff[-1]
hex(delta_in)

[2]: '0x400000'

The input difference that receives the highest score, 0x400000, is indeed the one that was identified
as optimal for 5 rounds in the initial work.

0.1.3 Neural Network Architecture and Pipeline

[Goh19] Gohr, Aron. "Improving Attacks on Round-Reduced Speck32/64 using Deep Leamning."” Advances in Cryptology—CRYPTO 2019

P&P =6 L o
—> ;ﬂ - ff‘“;“) —»| neural distinguisher — (ves)
N =E o B
B, & P, = rand ! (1) Golcy ReP =4
0 (no)

[Goh19] neural distinguisher

Training an 8-Round Distinguisher For 8 rounds, the training scheme described
above fails, i.e. the model does not learn to approximate any useful function.
We still succeeded in training an 8-round distinguisher slightly superior to the
difference distribution table by using several stages of pre-training. First, we
retrained our best seven-round distinguisher to recognize 5-round Speck32/64
with the input difference 028000/840a (the most likely difference to appear three

”Conventional” choices
residual network with a fully connected prediction head; ReLU activations
in hidden layers; final layer sigmoid; MSE loss

Expert or heuristic choices rounds afte the input difference 0z0040/0000). This was done on 107 examples
o = :) for ten epochs with a bateh size of 5000 and a learning Fate of 10=4] Then, we
* 64-bit ciphertext pair is reshaped into 4 x 16-bit words trained the distinguisher so obtained to recognize 8-round Speck with the input

+ Hyperparameters difference 020040/0000 by proc freshly generated examples once with
o)) batch size 10000, keeping the learning rate constant. Finally, learning rate was
Number of filters; Cyclic learning rate schedule dropped twice to 1070 and finally to 107% after processing another 107 fresh
+ Training pipeline: Elaborate 8 round training scheme examples each, again with a batch size of 10000.
Network depth-10 for SPECK32 rounds 5 and 6 vs depth-1 for
rounds 7 and 8 Is not clear that Gohr’s network [Goh19] is suitable for all ciphers [GLN23]

Gohr’s neural architecture encodes the word structure of SPECK, implicitely adding knowledge
on the primitive. The choice of the best structure to use is not always that straightforward: for
instance, for AES, dependencies exists between the bits of a difference byte, but also between the
bytes of a column, and sometimes (in related key) between the bytes of a given row. The represen-
tation choice has a significant impact on the learning performance, so it is useful to automatically
handle such long and short range dependencies; this also preserves the black box aspect of the
distinguisher.

DBitNet instead of reshaping
Multi-Scale Context Aggregation by Dilated Convolutions
Mix long and short range dilations
Scales automatically with cipher input size

Dilation rate 1 Dilation rate 3

k=2 [~ []
d=1 [} A

;|:._:r
|
w N
N

[3]:

dbitnet = tester.get_neural_network(network_name='dbitnet', input_size=64)
dbitnet.summary ()

For Gohr's resnet:
tester.get_neural_network(network_name='gohr_resnet', input_size=64,,
sword_size=16)

2025-03-15 08:00:46.098853: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:0 with 47365 MB memory: -> device:
0, name: Quadro RTX 8000, pci bus id: 0000:1d4:00.0, compute capability: 7.5
2025-03-15 08:00:46.100136: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:1 with 47365 MB memory: -> device:
1, name: Quadro RTX 8000, pci bus id: 0000:1e:00.0, compute capability: 7.5
2025-03-15 08:00:46.101135: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:2 with 47365 MB memory: -> device:
2, name: Quadro RTX 8000, pci bus id: 0000:1f:00.0, compute capability: 7.5
2025-03-15 08:00:46.102092: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:3 with 47365 MB memory: -> device:
3, name: Quadro RTX 8000, pci bus id: 0000:20:00.0, compute capability: 7.5
2025-03-15 08:00:46.103039: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:4 with 47365 MB memory: -> device:
4, name: Quadro RTX 8000, pci bus id: 0000:21:00.0, compute capability: 7.5
2025-03-15 08:00:46.103999: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:5 with 47365 MB memory: -> device:
5, name: Quadro RTX 8000, pci bus id: 0000:22:00.0, compute capability: 7.5
2025-03-15 08:00:46.104924: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:6 with 47365 MB memory: -> device:
6, name: Quadro RTX 8000, pci bus id: 0000:23:00.0, compute capability: 7.5
2025-03-15 08:00:46.105862: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device
/job:localhost/replica:0/task:0/device:GPU:7 with 47365 MB memory: -> device:
7, name: Quadro RTX 8000, pci bus id: 0000:24:00.0, compute capability: 7.5

Model: "model"

Layer (type) Output Shape Param # Connected to

input_1 (Inputlayer) [(None, 64, 1)] 0 (]

tf.math.subtract (TFOpLamb
['input_1[0][0]"']
da)

tf.math.truediv (TFOpLambd
['tf.math.subtract[0] [0] ']
a)

convld (ConviD)
['tf.math.truediv[0] [0]']

batch_normalization (Batch
['convid[0] [0] ']
Normalization)

convid_1 (ConvilD)
['batch_normalization[0] [0] ']

add (Add)
['convid_1[0][0]"',
'batch_normalization[0] [0]']

batch_normalization_ 1 (Bat
['add[0] [0]']
chNormalization)

convid_2 (ConviD)
['batch_normalization_1[0] [0]

batch_normalization_2 (Bat
['convid_2[0] [0]"']
chNormalization)

convid_3 (ConviD)
['batch _normalization_2[0] [0]

add_1 (Add)
['convid_3[0][0]"',
'batch_normalization_2[0] [0]"'

batch_normalization_3 (Bat
['add_1[0][0]"']
chNormalization)

convlid_4 (ConviD)

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

(None,

64,

64,

33,

33,

33,

33,

33,

18,

18,

18,

18,

18,

11,

1)

1)

32)

32)

32)

32)

32)

48)

48)

48)

48)

48)

64)

96

128

2080

128

3120

192

4656

192

6208

['batch _normalization_3[0] [0]"'

batch_normalization_4 (Bat (None,
['convid_4[0][0]']
chNormalization)

convid 5 (ConviD) (None,
['batch_normalization_4[0] [0]"'

add_2 (Add) (None,
['convid_5[0][0]",
'batch_normalization_ 4[0] [0]'

batch_normalization_5 (Bat (None,
['add_2[0][0]']
chNormalization)

convid_6 (ConviD) (None,
['batch_normalization_5[0] [0]"'

batch_normalization_ 6 (Bat (None,
['convid_6[0][0]"']
chNormalization)

convid_7 (ConviD) (None,
['batch_normalization_6[0] [0]"'

add_3 (Add) (None,
['convid_7[0][0]"',
'batch_normalization_6[0] [0]"'

batch_normalization 7 (Bat (None,
['add_3[0][0]']
chNormalization)

flatten (Flatten) (None,

['batch_normalization_ 7[0] [0]"'

dense (Dense) (None,
['flatten[0] [0]']

11, 64)

11, 64)

11, 64)

11, 64)

8, 80)

8, 80)

8, 80)

8, 80)

8, 80)

640)

256)

256

8256

256

10320

320

12880

320

164096

[4]:

batch_normalization_8 (Bat (None, 256)
['dense[0] [0] ']
chNormalization)

activation (Activation) (None, 256)
['batch_normalization_8[0] [0]"'

dense_1 (Dense) (None, 256)
['activation[0] [0] ']

batch_normalization_9 (Bat (None, 256)
['dense_1[0][0]']
chNormalization)

activation_1 (Activation) (None, 256)
['batch_normalization_9[0] [0]"'

dense_2 (Dense) (None, 64)
['activation_1[0] [0]']

batch_normalization_10 (Ba (None, 64)
['dense_2[0] [0]']
tchNormalization)

activation_2 (Activation) (None, 64)

['batch_normalization_10[0] [0]

dense_3 (Dense) (None, 1)
['activation_2[0] [0]']

1024

65792

1024

16448

256

65

Total params: 298113 (1.14 MB)
Trainable params: 296065 (1.13 MB)
Non-trainable params: 2048 (8.00 KB)

X, Y = tester.get_differential_dataset(input_differences=[delta_in, 0],

onumber_of_rounds=5, samples=10%*6)
print(X.shape, Y.shape)

(1000000, 64) (1000000,)

10

[5]:

h = dbitnet.fit(X, Y, epochs=int(5), batch_size=5000, validation_split=0.1) #,

~Very slow on a CPU

Epoch 1/5
2025-03-15 08:00:59.484977

I

tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:432] Loaded cuDNN

version 8907

2025-03-15 08:00:59.878269:

XLA service 0x7£f6e54265470
guarantee that XLA will be

2025-03-15 08:00:59.878314:

StreamExecutor device (0):

2025-03-15 08:00:59.878321:

StreamExecutor device (1):

2025-03-15 08:00:59.878328:

StreamExecutor device (2):

2025-03-15 08:00:59.878336:

StreamExecutor device (3):

2025-03-15 08:00:59.878342:

StreamExecutor device (4):

2025-03-15 08:00:59.878349:

StreamExecutor device (5):

2025-03-15 08:00:59.878356:

StreamExecutor device (6):

2025-03-15 08:00:59.878363:

StreamExecutor device (7):

2025-03-15 08:00:59.883439:

I tensorflow/compiler/xla/service/service.

CcC

initialized for platform CUDA (this does not

used). Devices:

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5

I tensorflow/compiler/xla/service/service.

Quadro RTX 8000, Compute Capability 7.5
I

Ccc:

CccC:

CcC:

CccC:

CccC:

CccC:

CcC:

CccC:

:168]

176]

176]

176]

176]

176]

176]

176]

176]

tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:255] disabling MLIR
crash reproducer, set env var "MLIR_CRASH_REPRODUCER_DIRECTORY™ to enable.
2025-03-15 08:01:00.033324: I ./tensorflow/compiler/jit/device_compiler.h:186]
Compiled cluster using XLA! This line is logged at most once for the lifetime
of the process.

180/180 [] - 13s 31ims/step - loss: 0.1426 - acc:
0.8086 - val_loss: 0.2408 - val_acc: 0.6270

Epoch 2/5

180/180 [] - 5s 29ms/step - loss: 0.0996 - acc:
0.8774 - val_loss: 0.1888 - val_acc: 0.7304

Epoch 3/5

180/180 [] - 5s 28ms/step - loss: 0.0972 - acc:
0.8797 - val_loss: 0.0989 - val_acc: 0.8775

Epoch 4/5

180/180 [] - 5s 28ms/step - loss: 0.0959 - acc:
0.8809 - val_loss: 0.0963 - val_acc: 0.8796

Epoch 5/5

180/180 [] - 5s 28ms/step - loss: 0.0948 - acc:
0.8821 - val_loss: 0.0959 - val_acc: 0.8800

11

[6]:

In AutoND, we use curriculum learning to replace the non-blackbox staged training approach from
related works; in practice, we retrain the neural distinguisher from round r-1 on round r data, so
that basic properties (e.g., XOR) do not need to be relearnt. (Bao et al. (Asiacrypt 2023) use

freezing of the first layers instead)

In CLAASP, the whole pipeline can be run as follows:

from claasp.cipher_modules.report import Report

results =

tester.run_autond_pipeline(number_of_epochs=5, neural_net='dbitnet',

~optimizer_generations=10, training samples=10**6, testing_samples=10**5,,
woptimizer_samples=10%**3, verbose=True)

report = Report(results)
report.show()

Generation 0/10, 1619 nodes explored, 32 current, best is ['Oxbd3df7fa’,

'0xd3efc3e’,
0.60665625]

'0x8878b038', '0x104e0c30']

with [0.4315

0.4775625 0.4815625

Generation 1/10, 2177 nodes explored, 32 current, best is ['Ox45ebdla’,

'0x47eb4dla’,
2.59165625]

'0x2000"',

'0x200000'] with [0.63171875 0.63296875 1.92809375

Generation 2/10, 2670 nodes explored, 32 current, best is ['0x202000',

'0x208000"',
2.59165625]

'0x2000"',

'0x200000'] with [1.69390625 1.6968125

1.92809375

Generation 3/10, 3027 nodes explored, 32 current, best is ['0x2000',

'0x4000000"',
2.59165625]

'0x8000"',

'0x200000'] with [1.92809375 2.1394375 2.43546875

Generation 4/10, 3404 nodes explored, 32 current, best is ['0x4000000',

'0x8000', '0x102000',
2.59165625]

'0x200000'] with [2.1394375 2.43546875 2.562

Generation 5/10, 3669 nodes explored, 32 current, best is ['0x10000000',

'0x8000', '0x102000',
2.59165625]
Generation 6/10, 3932 nodes explored, 32
'0x102000', '0x200000'] with [2.32428125
Generation 7/10, 4148 nodes explored, 32
'0x200000', '0x600000', '0x400000'] with
3.42484375]

Generation 8/10, 4342 nodes explored, 32
'0x600000', '0x408000', '0x400000'] with
3.42484375]

Generation 9/10, 4474 nodes explored, 32
'0x600000', '0x408000', '0x400000'] with
3.42484375]

The highest reached round was 6

The best differences found by the optimi
0x400000 , with score 3.42484375
0x408000 , with score 3.1311875000000002

'0x200000'] with [

2.244875

current, best

2.43546875 2.562

current, best
[2.562 2.

current, best
[2.59165625 2.

current, best

[2.59165625 2.

zer are..

12

2.43546875 2.562

is ['0x204000', '0x8000',
2.59165625]

is ['0x102000',

59165625 2.64390625

is ['0x200000',
64390625 3.1311875

is ['0x200000',
64390625 3.1311875

0x600000 , with score 2.64390625

0x200000 , with score 2.59165625

0x102000 , with score 2.5620000000000007

0x1408000 , with score 2.5424375

0x502000 , with score 2.4449375000000004

0x8000 , with score 2.43546875

0x604000 , with score 2.3515937500000006

0x204000 , with score 2.3242812500000003

Training dbitnet on input difference ['0x400000', '0Ox0'] (['plaintext', 'key'l),
from round 3..

Epoch 1/5

200/200 [==============================] - 13s 30ms/step - loss: 0.0296 - acc:
0.9694 - val_loss: 0.4717 - val_acc: 0.5011

Epoch 2/5

200/200 [] - 6s 29ms/step - loss: 0.0065 - acc:
0.9996 - val_loss: 0.4077 - val_acc: 0.5406

Epoch 3/5

200/200 [] - 6s 29ms/step - loss: 0.0050 - acc:
0.9999 - val_loss: 0.0053 - val_acc: 0.9998

Epoch 4/5

200/200 [] - 6s 29ms/step - loss: 0.0039 - acc:
0.9999 - val_loss: 0.0036 - val_acc: 0.9999

Epoch 5/5

200/200 [] - 6s 29ms/step - loss: 0.0030 - acc:
1.0000 - val_loss: 0.0028 - val_acc: 0.9999

Validation accuracy at 3 rounds :0.9998999834060669

Epoch 1/5

200/200 [] - 6s 29ms/step - loss: 0.0319 - acc:
0.9660 - val_loss: 0.0342 - val_acc: 0.9628

Epoch 2/5

200/200 [] - 6s 29ms/step - loss: 0.0230 - acc:
0.9755 - val_loss: 0.0224 - val_acc: 0.9766

Epoch 3/5

200/200 [===] - 6s 29ms/step - loss: 0.0216 - acc:
0.9766 - val_loss: 0.0217 - val_acc: 0.9762

Epoch 4/5

200/200 [] - 6s 29ms/step - loss: 0.0205 - acc:
0.9775 - val_loss: 0.0218 - val_acc: 0.9761

Epoch 5/5

200/200 [] - 6s 29ms/step - loss: 0.0196 - acc:
0.9782 - val_loss: 0.0202 - val_acc: 0.9774

Validation accuracy at 4 rounds :0.9773600101470947

Epoch 1/5

200/200 [] - 6s 29ms/step - loss: 0.0993 - acc:
0.8728 - val_loss: 0.0948 - val_acc: 0.8786

Epoch 2/5

200/200 [] - 6s 29ms/step - loss: 0.0934 - acc:

0.8793 - val_loss: 0.0938 - val_acc: 0.8804

13

Epoch 3/5
200/200 [

] - 6s 29ms/step

0.8838 - val_loss: 0.0938 - val_acc: 0.8831

Epoch 4/5

200/200 [

1 - 6s 29ms/step

0.8888 - val_loss: 0.0912 - val_acc: 0.8866

Epoch 5/5

200/200 [

] - 6s 29ms/step

0.8920 - val_loss: 0.0859 - val_acc: 0.8913
Validation accuracy at 5 rounds :0.891319990158081

Epoch 1/5

200/200 [==============================] - 6s 29ms/step
0.7102 - val_loss: 0.1861 - val_acc: 0.7207

Epoch 2/5

200/200 [1 - 6s 29ms/step
0.7261 - val_loss: 0.1833 - val_acc: 0.7256

Epoch 3/5

200/200 [] - 6s 29ms/step
0.7291 - val_loss: 0.1824 - val_acc: 0.7270

Epoch 4/5

200/200 [] - 6s 29ms/step
0.7312 - val_loss: 0.1814 - val_acc: 0.7275

Epoch 5/5

200/200 [1 - 6s 29ms/step

0.7371 - val_loss: 0.1766

val_acc: 0.7372

Validation accuracy at 6 rounds :0.7372400164604187

Epoch 1/5

200/200 [] - 6s 29ms/step
0.5457 - val_loss: 0.2463 - val_acc: 0.5631

Epoch 2/5

200/200 [1 - 6s 29ms/step
0.5736 - val_loss: 0.2430 - val_acc: 0.5747

Epoch 3/5

200/200 [==============================] - 6s 29ms/step
0.5797 - val_loss: 0.2424 - val_acc: 0.5770

Epoch 4/5

200/200 [1 - 6s 29ms/step
0.5826 - val_loss: 0.2422 - val_acc: 0.5762

Epoch 5/5

200/200 [] - 6s 29ms/step

0.5845 - val_loss: 0.2422

val_acc: 0.5754

Validation accuracy at 7 rounds :0.576960027217865

Epoch 1/5

200/200 [

1 - 6s 29ms/step

0.4992 - val_loss: 0.2518 - val_acc: 0.5003

Epoch 2/5

200/200 [

1 - 6s 29ms/step

0.5052 - val_loss: 0.2516 - val_acc: 0.5025

14

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0908

.0874

.0851

.1927

.1829

.1810

L1797

.1765

. 2497

.2432

L2417

.2409

.2402

.25623

.2516

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

Epoch 3/5
200/200 [

] - 6s 29ms/step - loss:

0.5086 - val_loss: 0.2514 - val_acc: 0.5033

Epoch 4/5

200/200 [

] - 6s 29ms/step - loss:

0.5118 - val_loss: 0.2514 - val_acc: 0.5035

Epoch 5/5

200/200 [

] - 6s 29ms/step - loss:

0.5153 - val_loss: 0.2515 - val_acc: 0.5027
Validation accuracy at 8 rounds :0.5034599900245667

RESULTS

plaintext_input_diff : 0x400000

key_input_diff : 0xO
0
accuracy_round3 0.99990
accuracy_round4 0.97736
accuracy_round5 0.89132
accuracy_round6 0.73724
accuracy_round7 0.57696
accuracy_round8 0.50346
/11177
SCORES
scores
0x402000 1.867187
0x800 1.872469
0x50a000 1.883219
0x14000008 1.888469
0x20c000 1.924656
0x2000 1.928094
0x20400000 1.936719
0x700000 1.937438
0x408002 1.966562
0x4000 1.995187
0x60c000 2.024469
0x404000 2.057437
0x1000000 2.079625
0x80000 2.138000
0x4000000 2.139438
0x100000 2.150000
0x20000000 2.165563
0x1000002 2.173688
0x302000 2.179250
0x702000 2.183875

15

0.2514 - acc:

0.2511 - acc:

0.2509 - acc:

[7]:

[8]:

[9]:

0x4000008 2.185563
0x10000000 2.244875
0x204000 2.324281
0x604000 2.351594
0x8000 2.435469
0x502000 2.444938
0x1408000 2.542438
0x102000 2.562000
0x200000 2.591656
0x600000 2.643906
0x408000 3.131188
0x400000 3.424844

0.1.4 Using AutoND with custom implementations

The original AutoND, as well as CLAASP, require specific implementation formats for the prim-
itives. However, it is easy to implement a wrapper for custom implementations and use it within
AutoND.

'git clone https://github.com/Crypto-TII/AutoND.git

fatal: destination path 'AutoND' already exists and is not an empty directory.

But first, some path shennanigans for the notebook to see AutoND...

import sys
from pathlib import Path
=========== Set up PATH to be able to import modules from scr
Define a constant for the base directory
if '__file__' in globals(Q):

Running in a script

BASE_DIR = Path(__file__).resolve().parent
else:

Running in a Jupyter Notebook

BASE_DIR = Path() .resolve()
Use BASE_DIR to modify sys.path
sys.path.append(str(BASE_DIR / 'AutoND'))

The AutoND framework API requires an encryption_ function, with inputs:

e p: A binary uint8 numpy matrix of plaintexts, with one row per sample and one column per
bit

e k: A binary uint8 numpy matrix of keys, with one row per sample and one column per bit

e number_of rounds: the number of encryption rounds.

It is relatively straightforward to build such a wrapper, for instance extracting the CLAASP en-
cryption function implementation.

import random
from claasp.cipher_modules import code_generator

16

[10]:

from claasp.cipher_modules.generic_functions_vectorized_byte import
~integer_array_to_evaluate_vectorized_input

import numpy as np
from types import ModuleType

Speck encryption function generation

python_code_string = code_generator.
~generate_byte_based_vectorized_python_code_string(speck,,
~store_intermediate_outputs=True)

speck_encryption_functions = ModuleType("speck_encryption_functions")

exec(python_code_string, speck_encryption_functions.__dict__)

speck_encrypt = lambda p, k, nr: speck_encryption_functions.evaluate([p, k],
<True) ['round_output'] [nr-1]

def encryption_function_wrapper(p, k, number_of_rounds):
optimize requires an encryption_function that takes as input a matriz of,
wbits (one row per sample); the wrapper does the conversion

rr

p_bytes = np.packbits(p, axis=1).transpose()

k_bytes = np.packbits(k, axis=1).transpose()

c_bytes = speck_encrypt(p_bytes, k_bytes, number_of_rounds)
c_bits = np.unpackbits(c_bytes, axis=1)

return c_bits

We can then run the optimizer to find a good input difference...

from AutoND.optimizer import optimize

input_diffs, highest_round = optimize(plain_bits=32, key_bits=64,
~encryption_function=encryption_function_wrapper, nb_samples=10**3, scenario
= "single-key", log_file = None, epsilon=0.1)

Evaluating differences at round 1

Generation 0/5, 528 nodes explored, 32 current, best is ['0x805db204',
'0xfe23c7f2', 'Oxddffffaf', 'Oxff0dd9fc'] with [0.2844375 0.2946875 0.30125
0.302]

Generation 1/5, 1023 nodes explored, 32 current, best is ['Oxff0dd9fc',
'0x81034300', 'Oxcc0103b0', '0xd33f7ff0'] with [0.302 0.30375 0.31
0.3110625]

Generation 2/5, 1513 nodes explored, 32 current, best is ['0xd33f7£ff0',
'0x80490£80"', '0xe0028740', '0Oxf03dfbe0'] with [0.3110625 0.3290625 0.335625
0.3810625]

Generation 3/5, 2005 nodes explored, 32 current, best is ['Oxd', '0x20000044',
'0xf03dfbe0', '0x200'] with [0.363625 0.3745 0.3810625 0.4371875]
Generation 4/5, 2497 nodes explored, 32 current, best is ['0Oxf03dfbel',
'0x6000000', '0x208800', '0x200'] with [0.3810625 0.4025625 0.414875 0.4371875]
Evaluating differences at round 2

17

Generation 0/5, 528 nodes explored, 32 current, best is ['0x80400200',
'0x2040000', '0x6000000', '0x200'] with [0.2288125 0.23984375 0.25946875
0.2840625]

Generation 1/5, 1020 nodes explored, 32 current, best is ['0x2040000',
'0x6000000', '0x200', '0x400000'] with [0.23984375 0.25946875 0.2840625
0.439375]

Generation 2/5, 1507 nodes explored, 32 current, best is ['0x40400000',
'0x40000', '0x20000000', '0x400000'] with [0.291125 0.32159375 0.32403125
0.439375]

Generation 3/5, 1984 nodes explored, 32 current, best is ['0x2000004',
'0x40000', '0x20000000', '0x400000'] with [0.3150625 0.32159375 0.32403125
0.439375]

Generation 4/5, 2455 nodes explored, 32 current, best is ['0x40000',
'0x20000000', '0x404000', '0x400000'] with [0.32159375 0.32403125 0.3314375
0.439375 1]

Evaluating differences at round 3

Generation 0/5, 521 nodes explored, 32 current, best is ['0x4000000',
'0x20000000', '0x2000004', '0x400000'] with [0.1989375 0.20653125 0.2213125
0.31371875]

Generation 1/5, 974 nodes explored, 32 current, best is ['0x8000000', '0x8000',
'0x2000004', '0x400000'] with [0.21 0.22009375 0.2213125 0.31371875]
Generation 2/5, 1426 nodes explored, 32 current, best is ['0x8000', '0x2000004',
'0x600000', '0x400000'] with [0.22009375 0.2213125 0.2433125 0.31371875]
Generation 3/5, 1839 nodes explored, 32 current, best is ['0x200000',
'0x600000', '0x408000', '0x400000'] with [0.23934375 0.2433125 0.28903125
0.31371875]

Generation 4/5, 2246 nodes explored, 32 current, best is ['0x200000',
'0x600000', '0x408000', '0x400000'] with [0.23934375 0.2433125 0.28903125
0.31371875]

Evaluating differences at round 4

Generation 0/5, 490 nodes explored, 32 current, best is ['0x600000', '0x200000',
'0x408000', '0x400000'] with [0.1169375 0.11696875 0.1514375 0.17509375]
Generation 1/5, 912 nodes explored, 32 current, best is ['0x600000', '0x200000',
'0x408000', '0x400000'] with [0.1169375 0.11696875 0.1514375 0.17509375]
Generation 2/5, 1321 nodes explored, 32 current, best is ['0x600000',
'0x200000', '0x408000', '0x400000'] with [0.1169375 0.11696875 0.1514375
0.17509375]

Generation 3/5, 1699 nodes explored, 32 current, best is ['0x600000',
'0x200000', '0x408000', '0x400000'] with [0.1169375 0.11696875 0.1514375
0.17509375]

Generation 4/5, 2049 nodes explored, 32 current, best is ['0x600000',
'0x200000', '0x408000', '0x400000'] with [0.1169375 0.11696875 0.1514375
0.17509375]

Evaluating differences at round 5

Generation 0/5, 488 nodes explored, 32 current, best is ['0x200000',
'0x1408000', '0x408000', '0x400000'] with [0.0374375 0.04315625 0.04421875
0.05934375]

Generation 1/5, 924 nodes explored, 32 current, best is ['0x200000',

18

[]1:

'0x1408000', '0x408000', '0x400000'] with [0.0374375 0.04315625 0.04421875
0.05934375]

Generation 2/5, 1330 nodes explored, 32 current, best is ['0x200000',
'0x1408000', '0x408000', '0x400000'] with [0.0374375 0.04315625 0.04421875
0.05934375]

Generation 3/5, 1714 nodes explored, 32 current, best is ['0x200000',
'0x1408000', '0x408000', '0x400000'] with [0.0374375 0.04315625 0.04421875
0.05934375]

Generation 4/5, 2093 nodes explored, 32 current, best is ['0x200000',
'0x1408000', '0x408000', '0x400000'] with [0.0374375 0.04315625 0.04421875
0.05934375]

Evaluating differences at round 6

Generation 0/5, 493 nodes explored, 32 current, best is ['0xa04000',
'0x80e04001', '0xa2400004', '0x400000'] with [0.01796875 0.01803125 0.018125
0.01984375]

Generation 1/5, 978 nodes explored, 32 current, best is ['0xa2400004',
'0x8000050', '0x256000', '0x400000'] with [0.018125 0.01828125 0.01928125
0.01984375]

Generation 2/5, 1459 nodes explored, 32 current, best is ['0x8000050',
'0x48808050', '0x256000', '0x400000'] with [0.01828125 0.019 0.01928125
0.01984375]

Generation 3/5, 1940 nodes explored, 32 current, best is ['0x8000050',
'0x48808050', '0x256000', '0x400000'] with [0.01828125 0.019 0.01928125
0.01984375]

Generation 4/5, 2408 nodes explored, 32 current, best is ['0x8000050',
'0x48808050', '0x256000', '0x400000'] with [0.01828125 0.019 0.01928125
0.01984375]

The implementation can also be used to train the neural network as follows.

from AutoND.train_nets import train_neural_distinguisher
from AutoND.main import make_train_data, integer_to_binary_array

Using the best input difference returned by the optimizer
delta_state_bin = integer_to_binary_array(input_diffs[-1], plain_bits)

And a wrapper for the dataset generation
def data_generator(num_samples, nr, delta_state = delta_state_bin):
return make_train_data(encryption_function_wrapper, plain_bits, key_bits,
~num_samples, nr, delta_state, delta_key=0)

We train from the last round reached by the optimizer.

starting_round = highest_round

train_neural_distinguisher(starting_round, data_generator, 'gohr_amsgrad',
~int(32), int(16), log_prefix = './', _epochs = int(5), _num_samples=10%*6,
o_num_val_samples=10%**5)

Training on 5 epochs ..

19

Epoch 1/5

/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3000:
UserWarning: You are saving your model as an HDF5 file via ‘model.save() . This
file format is considered legacy. We recommend using instead the native Keras
format, e.g. "model.save('my_model.keras') ™.

saving_api.save_model(

acc: 0.8268

200/200 - 6s - loss: 0.1287
6s/epoch - 30ms/step

Epoch 2/5

200/200 - 3s - loss: 0.0968 - acc: 0.8765 - val_loss: 0.0992 - val_acc: 0.8755
3s/epoch - 13ms/step

Epoch 3/5

200/200 - 3s - loss: 0.0935 - acc: 0.8804 - val_loss: 0.0944 - val_acc: 0.8798
3s/epoch - 13ms/step

Epoch 4/5

200/200 - 3s - loss: 0.0915 - acc: 0.8835 - val_loss: 0.0927 - val_acc: 0.8823
3s/epoch - 13ms/step

Epoch 5/5

200/200 - 3s - loss: 0.0889 - acc: 0.8877 - val_loss: 0.0897 - val_acc: 0.8867
3s/epoch - 13ms/step

gohr_amsgrad, round 5. Best validation accuracy: 0.886650025844574

Epoch 1/5

200/200 - 3s - loss: 0.2000 - acc: 0.6964 - val_loss: 0.1999 - val_acc: 0.6980
3s/epoch - 15ms/step

Epoch 2/5

200/200 - 3s - loss: 0.1886 - acc: 0.7138 - val_loss: 0.1921 - val_acc: 0.7138
3s/epoch - 13ms/step

Epoch 3/5

200/200 - 3s - loss: 0.1833 - acc: 0.7241
3s/epoch - 13ms/step

Epoch 4/5

200/200 - 3s - loss: 0.1799 - acc: 0.7305 - val_loss: 0.1812 - val_acc: 0.7268
3s/epoch - 13ms/step

Epoch 5/5

200/200 - 3s - loss: 0.1763 - acc: 0.7370 - val_loss: 0.1783 - val_acc: 0.7327
3s/epoch - 13ms/step

gohr_amsgrad, round 6. Best validation accuracy: 0.732699990272522

Epoch 1/5

200/200 - 3s - loss: 0.2505 - acc: 0.5441 - val_loss: 0.2470 - val_acc: 0.5542
3s/epoch - 16ms/step

Epoch 2/5

200/200 - 3s - loss: 0.2446 - acc: 0.5674 - val loss: 0.2450 - val _acc: 0.5671
3s/epoch - 13ms/step

Epoch 3/5

200/200 - 3s - loss: 0.2430 - acc: 0.5753 - val_loss: 0.2445 - val_acc: 0.5685
3s/epoch - 15ms/step

Epoch 4/5

val_loss: 0.2138 val_acc: 0.6310

val_loss: 0.1847 - val_acc: 0.7224

20

[]1:

200/200 - 3s - loss: 0.2420
3s/epoch - 13ms/step

Epoch 5/5

200/200 - 3s - loss: 0.2412
3s/epoch - 13ms/step
gohr_amsgrad, round 7. Best
Epoch 1/5

200/200 - 3s - loss: 0.2536
3s/epoch - 16ms/step

Epoch 2/5

200/200 - 3s - loss: 0.2519
3s/epoch - 13ms/step

Epoch 3/5

200/200 - 3s - loss: 0.2516
3s/epoch - 13ms/step

Epoch 4/5

200/200 - 2s - loss: 0.2513
2s/epoch - 1lms/step

Epoch 5/5

0.1.5 What’s next?

- acc: 0.5796 - val_loss: 0.2441 - val_acc:

- acc: 0.5826 - val_loss: 0.2440 - val_acc:

validation accuracy: 0.5717599987983704

- acc: 0.4997 - val_loss: 0.2527 - val_acc:

- acc: 0.5093 - val_loss: 0.2524

- acc: 0.5137 - val_loss: 0.2522 - val_acc:

- acc: 0.5190

e Improved optimizer with GPU-based parallel encryption
o Prepended differential integration (future work of FSE’24)
o Feature engineering automation through partial decryption

-> Will be made open source through the AutoND repo with a focus on modularity and compati-

bility with other libraries

21

val_acc:

val_loss: 0.2522 - val_acc:

.5718

.5710

.5007

.4996

.5012

.4999

	Automating Neural Cryptanalysis
	Neural Cryptanalysis Overview
	Input Difference Selection
	Neural Network Architecture and Pipeline
	Using AutoND with custom implementations
	What's next?

